
JavaScript 1

JavaScript
Script Notes
HTML

Create objects on a web page

Attributes can further define properties - href of an anchor describes a link,
class attribute describes a css class, etc...

CSS
Do not create objects

Style properties that define appearance

Classes like hover allow for some interactivity

JS
Creates interactivity

Makes pages dynamic after they load

implement logic and analysis

Process asynchronous data - exchange information with other web pages

Can act as a bridge between

Page/User

Html and Server

HTML and CSS

Can manipulate objects

Creates objects

Stores data in vars and arrays

JavaScript 2

Calculates and can have logical branching

Can have events and delayed execution

Common Uses of JS
Validate data in forms

Respond to user interaction with objects

Change objects, stylesheets, images

Load data from a server and display it on a page

Create dynamic menus

JS Workflow
What do you want to do, when do you want to do it, and sometimes how do
you want to do it

DOM Document Object Model — drilling down through object tree to access
objects vs named objects

Objects: Anything from the entire document to a text input field

Three aspects:

Properties: Features of an object; set through CSS and sometimes
HTML

Methods: Actions that an object can perform such as writing content
to a page or submitting a form; these do something (like round())

Events/event handlers: Events that objects can undergo and that can
be used as triggers

Placed in the script block in the head or in any script block that is inline

Might set up variables in head, generate alerts in body, etc...

Can be triggered immediately, when an event occurs, or when it is called
(function)

JavaScript 3

Variables are "containers" in which you can store information (such as text and
numbers), objects from a page (such as images and text boxes), or delayed
code called functions (routines you write that are stored in that variable but
not "executed" until you "call" that variable.)

Variables need to be "created" with the var command.

Variables can be "read" (data/objects retrieved from them) and "written" (store
new data/objects into them)

The "arguments" of a method or function are pieces of data (none, one or more)
that you pass along to the routine. For instance, when you call the alert method
you need to tell the program WHAT to display in the alert. So you pass the
"message" as the sole argument in an alert call. The window.close() method does
not have any argumetns (nothing else you need to tell it about closing a window),
so the parentheses are always empty when you call that method. But regardless
of whether a method (or function) has any arguments, you must always provide or
represent that format through parentheses.

Methods are pre-written routines (or "mini programs") already stored in
Javascript.

Functions are routines that YOU write. You must define them in a script block
BEFORE you call them.

http://iyawebdev.com/component.cfm?compjoinid=6048&course=acad275

Objects:

Objects can be anything from entire document to small text input field.

Three aspects to objects:

http://iyawebdev.com/component.cfm?compjoinid=6048&course=acad275

JavaScript 4

 Properties

 Methods

 Events/ Event Handlers

Common objects include

window (the browser window)

document (the overall html document)

document.body (the visual page/content of the page)

Functions:

Functions are variables that contain not data (text or string) but rather a
set of JS code to be "run".

Functions can be set up to receive data (called parameters of the function)
in which case when you call that function you pass data to it (called
arguments). Functions can also return data out (with a return command).

Functions are most efficient to use when you want to execute a set of
code many times. Or when you want to write out a long set of code in a
central location that you can activate with a simple name (rather than
having 100 lines of code inside an event handler, for instance).

Function
Small set of code to be run/executed

Can be passed arguments

Function Parameters: When you define/create/store a function, you have to
decide whether to not it needs "input" parameters -- whether the function
"expects" to be handed data when it is called, and what "function variables"
names to store each piece of data (for use in the function). Function
parameters are representedby variable names in the function parentheses. A
function with no paremeters still needs () but they are just left empty when

JavaScript 5

defining/writing the function. Functions parameters are called "local/function
variables", and exist only within the body of the function.

Function Arguments: When you call/activate a function, you have to decide
whether to pass data into the function. Data to be passed into a function are
called arguments, and they are put inside the () when you call the function.
Even if there is no data to be passed into a function, you always have to
include the parentheses (even if they are empty).

function(){}
//Unnamed functions will run instantly at that point in your code

fadeinpage = function(){}
//Named functions can be activated by calling fadeinpage(), which has been stored in memor
y

swapImage = function(imgname, newsrc){}
//Functions can have inputs that, everytime you call the program, it will pass two pieces
 of information

Basics

document.querySelector("container");
//allows you to target specific objects with JS

//document. simply targets everything

document.querySelector("").addEventListener("", function(){

});

//adds an event listener to a specific object, which allows you to triggerevents

JavaScript 6

this.

//allows you to manipulate the properties of something that has already been selected; wor
ks in event listeners, for example

//specifically targets the object that caused the trigger

document.querySelector("#idname").addEventListener("click", function(){
 this.value //would return the value of #idname
});

//if you want, you can create your own attribute and then retrieve it with JS
//for this, you would have to use .getAttribute("nameOfAttribute")

document.querySelector("#caption").innerHTML = this.getAttribute("caption");

alert("") //would alert the user

prompt("") //would open up and alert with a textbox; returns whatever hte user typed
var promptEntered = prompt"Enter name");

navigator.appName //web browser name
navigator.appVersion //version of web browswer

window.close()

window //object that represents the web browser (two popular methods are .open() and .clos
e()

document //object that represents HTML file/page

console.log() //pushes data to the debug conso

click
mouseover
mouseout
change //detects when a user changes a value

JavaScript 7

//used when you want to add a click function after you say .addEventListener("click", func
tion())

parseFloat() //attempts to convert a piece of data into a num

//number has to come first

variables1 = parseFloat(variable1)

document.write() //insert text and html into the current page at that location

//generally inline

object.property //read or set an HTML property of an object

//for example
("#iframe1").src = ""; //can read src but also change it

document.querySelector("#textBox").value=""; //reads only traditional attributes

<input type="text" value="test" myAttribute="test">

object.getAttribute("") //get the attribute from the HTML tag

//put the attribute name in the quotes

document.querySelector("#image").style.width //used to get various CSS properties

object.style.lineHeight //returns line height of object

//important - uses camel case

Math.random()
//Generates a number between 0 and 1

//multiply by the length of the array

JavaScript 8

Math.floor()
//Takes a number and cuts off everything after the decimal

document.documentElement.clientWidth //returns the width of the browser

Variables and Functions
Variables can contain:

Simple data: like a number or a text string

An entire object: For instance, if you stored an image from the page into a
variable, that variable contains ALL of the information about the image,
from its html src (file path) to all of its style properties/settings.

A function: You can store a function (a mini program/routine) to be "called"
or "activated" later.

Array data: Instead of one piece of data, arrays contain a series of values.
So for example instead of one (text) color a series of colors, or instead of
one image filepaths a series of image filenames.

Other: specialized types like boolean (true/false) and undefined

//declaring a variable

var newColor = "color name";

var newColor = prompt("Please enter a color");

//declaring a function

//when declaring a function you have to decide if it has input parameters; data passed is
 called an argument

var linkAlert = function(){
 //this is what is inside of my function
}
linkAlert();

var linkAlert = function(passd1, passd2){

JavaScript 9

 alert(passd1 + passd2);
 var myVar = 5;
}

var test = 5;

linkAlert(test, document.querySelector("#textbox").value);

Global Variables: Variables that are created by the var command outside of the
functions are global, which means they can be accessed from any blocks or
files on the page

Read/manipulated anywhere

Exist in the memory of browser when the page is loaded and are lost when
a new doc is loaded

Local Variables: Set up without var or initialized in routines (functions)
specifically for use in that function

Cannot be read outside the defining routine - when the functions finishes,
the data is lost

Object values: Vale properties of objects that can be manipulated like
variables

//setting variables
//use the = sign to set

var i = "New Page Name";

//can also add

i += "Page 2";

//comparing variables is done with conditionals, which use == instead of ==

if (i == 5){
 //then do this
} else if (i==6) {
 //if this secondary if is true, execute this code
 //only executes if the previous part was false
} else {
//if nothing above is true, then do this
}

JavaScript 10

if (x > y || x == y){
 //will execute if x is greater than y OR x is equal to Y
}

if (x>y && y > 10){
 //will execute if x is greater than y AND y is greater than 10
}

if (x != y){
 //will execute if x does not equal y
}

Properties of Objects

//you can edit official HTML properties with JS

object.src = //allows you to set or get the src of an image, depending on if there is an e
qual sign or not

object.style.CSSCommandInCamelCase = //allows you to set or get the css value of an objec
t, depending on if there is an equal sign or not

object.innerHTML = //allows you to set or get the HTML of an object, depending on if there
is an equal sign or not

Building Strings

//you can add strings together as you would expect

var addedString = "My " + "Name";

//if you want to use special characters in a string, you need to use an escape character o
r single quotes

JavaScript 11

var addedString = 'Don\'t' + 'Touch'
var addedString = "Don't" + "Touch"

Outputting Content to a Page

//insert content with document.write()
//this method outputs text directly into the HTML code of a page at the exact location tha
t it is encountered

<html>
<p>Hello</p>

<script>
 document.write("Patrick");

<script>

<p>How are you</p>

//Output: Hello Patrick How are you

//Strong tag did not appear in the page; it is HTML being written, not text

.innerHTML //allows you to replace or read the HTML of a div

//can be used as .innerHTML += to add to the code in a div

//you could also create placeholder objects and edit the src or attributes later

Ok, so what techniques/approaches do we have for building "dynamic" elements
in pages? There are four common approaches:

Insert code/objects in-line to your html with document.write()

Create placeholder objects for each one you intend to set (image, h3,
caption) and then after page load (or near end) edit the objects (with
Javascript or jQuery) to their new/real content. I.e. set new src of images,
innerHTML of containers, etc.

Create a ph div/container, that is empty, and after page load fill it with new
html of all the objects. I.e. create dynamic blocks of html insert then as the

JavaScript 12

new innerHTML of the ph div.

Leave empty space where the object will be located, then after page load
insert new objects into the pages DOM Domain Object Model). We will
explore this fourth approach later in the course.

Arrays
Gives us the ability to store multiple pieces of data under one variable

Sets up rows that start from 0

The row number is called the index

//declare and array and fill it

var favoriteColors = new Array;
favoriteColors[0] = "blue";
favoriteColor[1] = "red";

//declare an array and fill it
var favoriteColors = ["blue", "red"];

//declare and array and fill it

var favoriteColors = new Array;

favoriteColors.push("blue");
favoriteColors.push("red");

Parallel Array: The idea that you have a number of related pieces of data you
want to store in an array

Allows you to relate certain pieces of data together by having them share the
same index

Not related programmatically, only conceptually

JavaScript 13

Common Functions/Commands

object.length

//returns the length of a string (number of characters)

//returns the number of items in an array

.toUpperCase() and .toLowerCase()

//transform a string to all uppercase or all lowercase

//allows you to compare two strings neutrally

.indexOf("Search String", starting position)

//searches for the position of a string inside of a string

//does not require the second part after the comma to search the whole string

//returns the position in the string OR -1 if not found

keyPress //used to update every time a key is typed

.charAt(num of char location)

//function for a string that returns the value of the character at a certain passed locati
on in the string

//can convert to string with the toString() method

.substring(index1, index);
//returns all characters in a string between these two

//does not search through the second value - SO it will include index1, but will not inclu
de index

var myString = word;
myString.substring(0,2) //this will give me back wo

JavaScript 14

/man/ //searches for man - replace the "" with / /

//g suffix represents more than one occurence, otherwise it will only find the first one
//i suffix means case insensitive

//usually paired with the replace method

//regular expressions

object.replace(regularexpression, replacementString)

Loops
Takes one set of code and runs it over and over under conditions are met

For loops

Create a variable and give it a value

Set up the condition that determines whether a loop continues to repeat;
evaluated at every point in the loop

Write a command that is run at the end of every loop (increasing the value)

for (var i = 1; i < 5; i = i + 1){

}

//the break command can be used to break out of a loop if neccesary, for example if trigge
red by an if statement

var array = ["test", "test2"]
for(var i = 0; i < array.length; i++){
 alert(array[i]);
//array[0]
//array[1]
}

var findSport = function(sporttofind) {
 for(i=0;i<4;i=i+1) {
 if(sporttofind.toUpperCase() == sportname[i].toUpperCase()) {
 alert('The sport ' + sportname[i] + ' is played with a ' + sportobject[i] +
 ' and you often hear the phrase ' + sportphrase[i]);

JavaScript 15

 }
 }
}

//compares a passed variable to every point in the array using a for loop

Libraries
People write libraries of code that can be easily called

To add a script:

Use an src attribute to link the scripting source file

Can be placed in head or body, but it is best practice to put them as
close to the end body tag as possible

Sometimes also need to build a script block that initializes the elements
you want to use from the library on; this will initialize the elements you
want to use the libraries on

Include the plug ins external CSS file in the head

Edit your page's HTML to include certain objects or classes, ID, etc...

Script order matters

If you need a library, you need to call the library before you can use the
plug in

